URES
 MEASUREMENTS/REGULATIONS

A member of the Morgan Crucible Company Plc
for Thermoelements

MEASUREMENTS, CONTROLS, REGULATIONS

Ubiquitous technologies with versatile requirements

Whether in research and development, in modern industrial production or even in the home - there is no area in which measurements, control processes and regulations are not required. Today, there are constantly increasing demands for data accuracy. At the same time, the operating conditions for measuring and regulation instruments are becoming consistently stricter, resulting from, for example, temperature change endurance or aggressive mediums.

Owing to their competent high-tech material, technical ceramics made by W. HALDENWANGER have a tradition of performing strikingly well in a variety of extreme applications. This brochure shows a selection of possible applications within measurement and control technology and delivers important information for engineering and construction of ceramic components.

Aluminium oxide ceramic is commonly used to protect delicate sensors which are in constant contact with, for example, corrosion and other damaging processing substances.

Plugs for control lines in nuclear power plants are subject to high radiation; here, synthetic materials were not, or only partially resistant. However, our Alsint 99.7 components are resistant. These Alsint 99.7 components are also faultless in radioactive contaminated areas. As a result of the extreme
working temperatures, modern measuring methods such as DTA and DTC require ceramic sheath tubes and other ceramic components - specifically ultrapure Alsint 99.7 is used with DTA and DTC. Laser tubes made of Alsint 99.7 are also used to control the motion sequences of the $\mathrm{He}-\mathrm{Ne}$ Lasers in harsh operating conditions.

Sheath tubes made of various ceramic materials such as Alsint 99.7, Pythagoras, Sillimantin 60 NG, Sillimantin 60, SiC, Halsic-R and Halsic-I, as well as insulation rods made of Alsint 99.7 or Pythagoras, are applied in the field of temperature measurement.

Within the processes of controlled engineering, corrosion and abrasion, in connection with high temperatures, can result in extreme operational demands which metallic regulation carrying capacities can not withstand. In such cases, Alsint 99.7 or Zirconia components ensure reliable operations.

Technical ceramics reveals its strengths when other materials have long failed to fulfil necessary requirements. The diversity of design and utilization are therefore nearly limitless.

ALSINT 99.7	PYTHAGORAS	SILLIMANTIN 60
Type C 799 according to DIN EN 60672 $\mathrm{Al}_{2} \mathrm{O}_{3}$-content 99.7 \%	Type C 610 according to DIN EN 60672 $\mathrm{Al}_{2} \mathrm{O}_{3}$-content approx. 60 \%, Alkali-content 3 \%	Type C 530 according to DIN EN 60672 $\mathrm{Al}_{2} \mathrm{O}_{3}$-content 73-75 \%
Outer $/ \mathrm{Inner}$ $\varnothing \mathrm{in} \mathrm{mm}$ Outer $/ \mathrm{Inner}$ \varnothing in mm 0.8×0.3 12.0×8.0 1.3×0.7 12.7×8.9 1.6×1.0 14.0×10.0 1.8×1.2 15.0×10.0 2.0×1.0 17.0×12.0 2.7×1.7 17.0×13.0 3.0×2.0 17.5×11.1 4.0×2.0 20.0×15.0 5.0×3.0 24.0×18.0 6.0×4.0 25.4×19.1 8.0×5.0 26.0×20.0 9.0×6.0 28.0×22.0 9.6×6.4 30.0×23.0 10.0×6.0 10.0×7.0 max. length 3500 mm depending on outer \varnothing	Outer / Inner \varnothing in mm Outer $/$ Inner \varnothing in mm 0.8×0.3 14.0×10.0 1.3×0.7 15.0×10.0 1.6×1.0 15.0×11.0 1.8×1.2 16.0×12.0 2.0×1.0 17.0×12.0 2.7×1.7 17.0×13.0 3.0×2.0 17.5×11.1 4.0×2.0 20.0×15.0 5.0×3.0 24.0×19.0 6.0×4.0 25.4×19.1 8.0×5.0 26.0×18.0 9.0×6.0 26.0×20.0 10.0×6.0 28.0×22.0 10.0×7.0 30.0×23.0 12.0×8.0 max. length 3500 mm depending on outer \varnothing	$\begin{aligned} & \begin{array}{l} \text { Outer / Inner } \\ \varnothing \text { in } \mathrm{mm} \end{array} \\ & 15 \times 10 \\ & 20 \times 15 \\ & 22 \times 17 \\ & 24 \times 19 \\ & 26 \times 18 \\ & 28 \times 22 \\ & 30 \times 23 \end{aligned}$ max. length 3500 mm depending on outer \varnothing

Dimensions not included in the table can be custom made upon request.
All of the following tubes are available: both ends open, one end closed, both ends open with flange, one end closed with flange. Tolerances are in compliance with DIN 40 680. Customized tolerances upon request.

MorganAdvancedCeramics

2-BORE AND 4-BORE INSULATION RODS

Tools available

Insulation rods made of Alsint 99.7 or Pythagoras are used to insulate inserted thermal wires. In accordance with DIN 43725, Pythagoras insulation rods can be heated to temperatures up to $2732^{\circ} \mathrm{F} / 1500^{\circ} \mathrm{C}$. For higher temperatures, we recommend Alsint 99.7 insulation rods.

ALSINT 99.7 TYPE C 799												PYTHAGORAS TYPE C 610											
* $0 \varnothing$	ه/B \varnothing	2-bore	e rods 0 /B \varnothing		/B Ø	* $0 \varnothing$	D/B Ø	$\begin{gathered} \text { 4-bore } \\ 0 \\ 0 \\ 0 \end{gathered}$	$\begin{gathered} \text { re roc } \\ 0 \\ 0 \\ \hline \end{gathered}$	O Ø/B		* 0	Ø/B \varnothing	2-bor	re rods 0 $\text { //B } \varnothing$	0 Ø/		* 0	Ø/B Ø	4-bor	-	$0 \emptyset$	
1.2	0.2	5.2	0.2	7.9	1.8	1.5	0.3	5.5	1.3	10.0	1.8	1.1	0.3	5.1	1.5	8.5	2.5	1.5	0.3	4.9	1.1	8.7	2.2
1.2	0.3	5.2	1.6	8.0	2.0	1.7	0.4	5.6	1.0	10.0	3.1	1.2	0.2	5.1	1.9	8.7	2.3	1.7	0.4	4.9	1.4	8.8	2.5
1.4	0.3	5.2	1.7	8.2	1.8	2.3	0.5	5.6	1.3	10.2	2.7	1.2	0.3	5.2	1.7	9.0	2.0	2.1	0.5	5.1	1.2	9.1	2.5
1.7	0.3	5.2	1.8	8.2	2.5	2.4	0.5	5.6	1.5	10.3	2.3	1.4	0.3	5.2	1.9	9.1	2.4	2.3	0.5	5.2	1.1	9.2	2.1
1.9	0.6	5.4	1.3	8.3	1.6	2.4	0.6	5.7	1.2	10.5	1.1	1.5	0.4	5.4	1.8	9.2	2.8	2.3	0.6	5.2	1.3	9.3	2.8
2.0	0.3	5.5	1.5	8.4	2.9	2.6	0.6	5.8	1.2	10.5	1.5	1.6	0.3	5.4	1.9	9.4	2.9	2.4	0.6	5.3	1.0	9.4	1.8
2.0	0.4	5.5	1.8	8.5	1.3	2.7	0.5	5.8	1.5	10.7	2.5	1.8	0.6	5.5	0.9	9.7	2.7	2.5	0.5	5.3	1.1	9.4	3.0
2.0	0.6	5.5	1.9	8.7	2.5	2.7	0.6	5.9	1.5	11.6	2.5	1.9	0.6	5.5	1.1	9.7	3.7	2.5	0.6	5.3	1.2	9.5	1.5
2.1	0.6	5.5	2.0	8.7	2.6	2.7	0.7	6.0	1.3	11.7	3.5	2.0	0.6	5.5	1.8	9.8	3.7	2.5	0.7	5.4	1.1	9.8	1.1
2.3	0.5	5.7	1.1	8.8	1.5	2.8	0.7	6.0	1.4	11.7	3.7	2.1	0.5	5.5	1.9	9.9	3.9	2.6	0.6	5.5	1.2	9.8	1.4
2.7	0.8	5.7	1.8	8.9	0.5	2.9	0.7	6.1	1.8	11.8	3.5	2.1	0.6	5.6	1.5	10.2	2.7	2.7	0.6	5.5	1.5	10.0	2.4
2.9	0.5	5.8	1.4	8.9	2.5	3.2	0.7	6.2	1.7	11.8	3.8	2.6	0.8	5.6	1.8	10.2	3.8	2.8	0.8	5.6	1.5	10.4	3.0
3.0	0.7	5.8	2.0	9.0	1.6	3.3	0.8	6.3	1.7	11.9	3.9	2.7	0.5	5.7	1.9	10.3	3.2	3.0	0.7	5.7	1.2	10.9	2.5
3.1	1.0	5.9	1.0	9.1	2.5	3.5	0.9	6.4	1.2	12.6	3.6	2.9	0.7	5.9	0.9	10.4	3.0	3.1	0.8	5.8	1.6	11.0	3.4
3.2	1.1	5.9	1.2	9.3	2.4	3.6	0.7	6.4	1.6	12.9	4.1	3.0	1.1	5.9	1.8	10.4	3.8	3.3	0.9	5.8	1.7	11.0	3.5
3.3	1.1	5.9	1.8	9.3	3.0	3.6	1.1	6.5	1.7	13.3	3.1	3.1	1.1	5.9	2.0	10.5	3.0	3.4	0.6	5.9	1.7	11.0	3.6
3.4	1.1	5.9	1.9	9.6	2.1	3.8	0.8	6.6	1.5	13.3	3.5	3.2	1.0	6.0	1.0	10.6	3.5	3.4	1.0	6.0	1.2	11.1	3.7
3.6	0.5	5.9	2.0	9.7	2.5	3.8	1.0	6.6	2.0	14.2	3.6	3.4	0.5	6.0	1.5	10.7	2.5	3.4	1.2	6.0	1.6	11.2	3.8
3.6	0.8	6.0	1.5	9.8	2.9	3.9	0.7	6.7	1.0	14.3	3.5	3.4	0.8	6.0	2.0	10.7	3.7	3.5	0.8	6.1	1.5	11.5	3.3
3.7	1.1	6.0	1.8	10.0	2.3	4.0	1.0	6.7	1.9	15.8	3.8	3.5	1.1	6.3	1.5	10.9	1.5	3.5	1.0	6.1	1.7	11.8	3.5
3.7	1.2	6.1	1.9	10.0	3.1	4.0	1.1	7.0	1.5	16.9	4.6	3.5	1.2	6.3	1.8	11.0	3.0	3.6	0.8	6.2	1.5	12.5	3.0
3.8	1.1	6.2	1.0	10.0	3.8	4.1	0.7	7.8	1.5			3.7	1.1	6.4	0.9	11.5	3.0	3.7	0.7	6.2	2.0	12.5	3.4
3.9	1.2	6.2	1.8	10.2	1.5	4.1	0.8	7.8	2.0			3.8	0.5	6.4	1.4	11.5	3.3	3.7	0.9	6.3	1.0	12.5	3.8
4.0	0.8	6.2	2.0	10.2	2.7	4.2	0.7	7.9	1.5			3.8	0.8	6.4	2.4	11.7	4.0	3.8	0.6	6.7	1.8	13.0	3.5
4.0	1.0	6.3	0.9	10.3	2.8	4.2	0.8	8.0	2.3			3.8	0.9	6.5	1.0	11.9	1.1	3.8	0.9	7.3	1.5	13.2	3.6
4.1	0.5	6.3	1.8	10.9	2.7	4.2	1.2	8.3	1.7			3.9	0.9	6.5	1.6	12.0	3.9	3.8	1.1	7.3	1.9	13.2	4.0
4.1	0.9	6.4	1.0	10.9	3.9	4.3	0.7	8.3	1.8			3.9	1.2	6.5	1.9	12.8	4.5	3.9	0.6	7.4	1.5	13.4	3.4
4.1	1.0	6.4	1.5	11.1	3.1	4.3	0.8	8.3	2.3			4.0	1.3	6.5	2.2	13.0	2.4	3.9	0.8	7.8	1.7	14.2	4.0
4.2	1.2	6.4	2.1	11.1	3.9	4.3	1.2	8.4	1.9			4.2	1.2	6.8	2.2	14.1	4.5	3.9	1.1	7.8	2.3	14.8	3.7
4.3	1.3	6.7	1.5	11.3	3.6	4.5	1.3	8.4	2.2			4.2	1.3	7.0	1.1	14.2	4.5	4.0	0.7	7.9	1.9	15.0	3.6
4.3	1.4	6.7	1.8	11.4	2.5	4.6	1.0	8.5	1.5			4.2	1.6	7.0	2.6	15.3	4.8	4.0	1.1	7.9	2.2	15.8	4.5
4.4	1.3	6.8	0.9	11.6	1.5	4.7	0.7	8.5	2.5			4.3	1.2	7.1	2.4	17.7	4.0	4.0	1.2	8.0	1.8		
4.5	1.2	6.8	1.5	12.2	3.3	4.8	0.8	8.6	1.8			4.4	0.9	7.2	2.4	18.3	4.1	4.1	0.7	8.0	2.3		
4.6	1.0	6.8	2.4	12.2	3.4	4.8	1.0	8.6	1.9			4.4	1.0	7.4	1.8			4.2	1.3	8.0	2.4		
4.6	1.2	6.9	1.0	12.3	3.0	4.8	1.1	8.6	2.0			4.4	1.3	7.5	1.9			4.3	0.9	8.0	2.5		
4.7	1.0	6.9	1.6	12.5	4.1	4.8	1.2	8.6	2.3			4.5	1.0	7.7	1.7			4.4	0.7	8.1	1.5		
4.7	1.1	6.9	2.2	12.6	1.2	4.8	1.5	8.8	1.2			4.5	1.5	7.7	2.4			4.5	0.8	8.1	1.7		
4.7	1.3	7.0	1.6	13.6	4.6	5.0	1.1	8.8	1.5			4.6	1.6	7.8	1.6			4.5	0.9	8.1			
4.7	1.5	7.0	2.0	13.8	2.5	5.0	1.2	8.8	1.8			4.7	1.4	8.2	1.5			4.5	1.1	8.1	1.9		
4.8	1.0	7.2	2.3	15.0	4.6	5.1	1.0	9.1	2.1			4.7	1.7	8.2	2.4			4.5	1.2	8.1	2.3		
4.8	1.5	7.4	2.6	15.1	4.6	5.2	1.2	9.4	2.5			4.9	1.6	8.2	2.6			4.5	1.5	8.2	1.5		
4.9	1.7	7.5	1.1	15.9	3.3	5.2	1.3	9.6	2.9			4.9	1.7	8.4	0.5			4.7	1.1	8.2	1.8		
5.0	1.4	7.6	2.4	16.3	4.9	5.4	1.2	9.7	2.6					8.4				4.7		8.3			
5.0	1.8	7.7	2.5			5.5	1.2	9.9	2.8			5.1	1.2	8.5	1.6			4.8	0.9	8.5	1.5		

[^0]B Ø = Bore diameter in mm

MULTI-BORE INSULATION RODS

Tools available

[^1]MorganAdvancedCeramics

DIN MEASUREMENTS

Measurements for ceramic sheath tubes and insulation components for themoelements according to DIN 43724 and DIN 43725

DESIGN

Unglazed. Admissible tolerance of the wall thickness is in compliance with DIN 40680 Part 1, degree of accuracy: Coarse. Admissible deflection is in compliance with DIN 40680 Part 2, degree of accuracy: Fine, with the following specifications: A straight rod, diameter 0.8 x (d1-2s), must be able to be inserted to the bottom of the sheath tube. The rounded bottom of the sheath tube uniformly becomes the cylindrical section of the sheath tube.

REQUIREMENTS

Thermal shock resistance:

No visible damage after test implementation.
Dimensional stability: Original straightness
after test implementation.
Gastightness: No air is released during
testing: only valid for the sheath tubes labelled gastight in Table 1.

TESTS

Thermal shock resistance:

The sheath tube is inserted with the closed end into a 40 mm internal diameter tube furnace at
a constant rate (Table 2). The furnace is heated to the maximum permissible continuous temperature of the sheath tube. The sheath tube must not come in contact with the tube furnace, therefore a vertical setup of the tube furnace is recommended. After a minimum of 20 minutes holding time, the sheath tube is removed at the same rate and is hung freely in order to cool in calm air.

TABLE 2	
Diameter d1 in mm	Insertion rate $\mathrm{cm} / \mathrm{min}$
10	100
15	50
24 and 26	1

Dimensional stability:

The sheath tube is horizontally clamped into the tube furnace used for thermal shock resistance testing and is then heated to the maximum permissible continuous temperature. This procedure lasts for 30 minutes.

Gastightness:

The sheath tube is exposed to an inner overpressure of 2 bar, and then submersed in water for one minute.
Note: The tests should be conducted in the abovementioned order. The thermal shock resistance tests and dimensional stability tests can be conducted simultaneously when the tube furnace is setup horizontally.

GUIDELINES

for the selection of sheath tube materials according to DIN 43724, Paragraph 7:

- Alkalis- and hydrofluoric acid-free gases up to $2732{ }^{\circ} \mathrm{F} / 1500^{\circ} \mathrm{C}$: Type C 610
- Contact with alkali vapours up to $2732{ }^{\circ} \mathrm{F} / 1500^{\circ} \mathrm{C}$: Type C 799
- Gases of all kinds, if inner tubes are gastight, up to $2912{ }^{\circ} \mathrm{F} / 1600^{\circ} \mathrm{C}$: Type C 530
- Melting glass up to $2732{ }^{\circ} \mathrm{F} / 1500^{\circ} \mathrm{C}$: Type C 799
(not general specifications; reference values only)

Diameter and deflection tolerances without grinding according to DIN 40680

MorganAdvancedCeramics

Long Rollerse Life
High Halsicormance
Flexibilityities
W.

Teplitzer Str. 27 - D- 84478 Waldkraiburg
Tel. +49-(0)863860 0460
Fax +49-(0)8638 6004317
info@haldenwanger.de
www.haldenwanger.de

Haldenwanger forms part of the Morgan Advanced Ceramics group, which is a global business unit of the Morgan Crucible Company Plc.

[^0]: * $0 \varnothing=$ Outer diameter in mm

[^1]: $* O \varnothing=$ Outer diameter in mm
 B $\emptyset=$ Bore diameter in mm
 $C B \emptyset=$ Centre bore diameter in mm

